
Documentation for
hanythingondemand

Release 20161021.01

Ghent University

Fri, 21 Oct 2016 08:39:17

Contents

1 Introductory topics 3
1.1 What is hanythingondemand? . 3
1.2 Administration . 3

1.2.1 Prerequisites . 3
1.2.2 Torque . 3
1.2.3 Environment Modules . 4

1.3 Configuration . 5
1.3.1 Template parameters . 5
1.3.2 Service configs . 6
1.3.3 Autogenerated configuration . 6
1.3.4 Preview configuration . 6

1.4 Command line interface . 6
1.4.1 hod command . 7
1.4.2 hod subcommands . 8

1.5 Logging . 11
1.5.1 hanythingondemand logs . 11
1.5.2 Service logs . 12

1.6 Connecting to web user interfaces . 12
1.6.1 Setting up an SSH tunnel . 13
1.6.2 Browser SOCKS proxy configuration . 14
1.6.3 Ports for web user interfaces . 15

1.7 Spark . 16
1.8 Example use cases . 16

1.8.1 Common aspects . 16
1.8.2 Interactively using a Hadoop cluster . 17
1.8.3 Running a batch script on a Hadoop cluster . 18
1.8.4 Connecting to an IPython notebook running on an HOD cluster 20

i

ii

Documentation for hanythingondemand, Release 20161021.01

Welcome to the documentation of hanythingondemand (HOD, for short), a tool to set up and use an ad-hoc Hadoop
cluster on HPC systems through a cluster resource manager like Torque/PBS.

https://github.com/hpcugent/hanythingondemand

This documentation is intended for hanythingondemand version 3.2.0, and was last rebuilt on Fri, 21 Oct 2016
08:39:17.

Contents 1

https://github.com/hpcugent/hanythingondemand

Documentation for hanythingondemand, Release 20161021.01

2 Contents

CHAPTER 1

Introductory topics

1.1 What is hanythingondemand?

hanythingondemand is a set of scripts to start a Hadoop cluster from within another resource management system
(e.g., Torque/PBS). It allows traditional users of HPC systems to experiment with Hadoop or use it as a production
setup if there is no dedicated setup available.

1.2 Administration

This is a page for Administrators who wish to offer hanythingondemand on their PBS/Torque cluster. hany-
thingondemand is a particularly tricky project as it integrates several pieces of tecchnology (Torque, MPI, Java,
Hadoop, on Python) and as such we don’t have an out of the box installation procedure yet.

1.2.1 Prerequisites

Here’s an overview of the dependencies:

• A cluster using Torque

• environment-modules (used to test HOD) to manage the environment

• Python - 2.7.*

• Easybuild - we use Easybuild for installing software and hanythingondemand isn’t tested without it.

• mpi4py

• vsc-base - Used for command line parsing.

• vsc-mympirun - Used for setting up the MPI job.

• pbs_python - Used for interacting with the PBS (aka Torque) server.

• Netifaces

• Netaddr

• Java

• Hadoop binaries

1.2.2 Torque

To use hanythingondemand you must be running a cluster that uses Torque as the resource manager.

3

http://www.adaptivecomputing.com/products/open-source/torque/
http://modules.sourceforge.net/
https://github.com/hpcugent/easybuild
http://mpi4py.scipy.org/
https://github.com/hpcugent/vsc-base
https://github.com/hpcugent/vsc-mympirun
https://oss.trac.surfsara.nl/pbs_python
https://pypi.python.org/pypi/netifaces
https://pypi.python.org/pypi/netaddr
http://archive.cloudera.com/cdh4/cdh/4/
http://www.adaptivecomputing.com/products/open-source/torque/

Documentation for hanythingondemand, Release 20161021.01

1.2.3 Environment Modules

We use environment modules in conjunction with EasyBuild. You do not require environment-modules, however
you will need to sort out all the paths for your users if you elect to not use it.

Easybuild

The following dependencies are installable using Easybuild. They should be pulled in when using the eb
hanythingondemand-${VERSION}.eb --robot command:

mpi4py

EasyBuild scripts for mpi4py are available here

vsc-base

EasyBuild scripts for vsc-base are available here

vsc-mympirun

EasyBuild scripts for vsc-mympirun are available here

netifaces

EasyBuild scripts for netifaces are available here

netaddr

EasyBuild scripts for netaddr are available here

pbs_python

EasyBuild scripts for pbs_python are available here

Java

We use the Oracle JVM which isn’t directly installable from EasyBuild since you need to register on the website
to get the files.

Note: You’ll need to manually download the JDK tarballs (requires registration) and seed them to EasyBuild.

Hadoop

We use Cloudera’s Hadoop distribution and have tested with chd5.3.1.

4 Chapter 1. Introductory topics

http://modules.sourceforge.net/
https://github.com/hpcugent/easybuild
https://github.com/hpcugent/easybuild-easyconfigs/tree/master/easybuild/easyconfigs/m/mpi4py
https://github.com/hpcugent/easybuild-easyconfigs/tree/master/easybuild/easyconfigs/v/vsc-base
https://github.com/hpcugent/easybuild-easyconfigs/tree/master/easybuild/easyconfigs/v/vsc-mympirun
https://github.com/hpcugent/easybuild-easyconfigs/tree/master/easybuild/easyconfigs/n/netifaces
https://github.com/hpcugent/easybuild-easyconfigs/tree/master/easybuild/easyconfigs/n/netaddr
https://github.com/hpcugent/easybuild-easyconfigs/tree/master/easybuild/easyconfigs/p/pbs_python
http://www.oracle.com/technetwork/java/javase/archive-139210.html
https://github.com/hpcugent/easybuild-easyconfigs/blob/master/easybuild/easyconfigs/h/Hadoop/Hadoop-2.5.0-cdh5.3.1-native.eb

Documentation for hanythingondemand, Release 20161021.01

1.3 Configuration

The configuration of hanythingondemand starts with the hod.conf file. This is an ini style configuration file
with at least two sections: Meta and Config. Here is an example taken from the Hadoop 2.3 configs:

[Meta]
version=1

[Config]
modules=Hadoop/2.3.0-cdh5.0.0
master_env=HADOOP_HOME,EBROOTHADOOP,JAVA_HOME
services=resourcemanager.conf,nodemanager.conf,screen.conf
config_writer=hod.config.writer.hadoop_xml
workdir=/tmp
directories=$localworkdir/dfs/name,$localworkdir/dfs/data
autogen=hadoop

Here we have the Meta section with version set to 1. Version refers to the hanythingondemand configuration
version. This is a placeholder in case we change the configurations around. That’s all the Meta information is
needed (for now). The following parameters are set in the Config section:

• autogen - Configuration files to autogenerate. This can be hadoop, hadoop_on_lustre2, or left blank. If it
is set then hanythingondemand will create a basic configuration for you. This is particularly useful since it
will calculate values for memory settings.You can then override any settings you feel necessary.

• config_writer - a reference to the python code that will output the configuration used by the services.

• directories - directories to create. If the service would fail without some directories being created,
they should be entered here.

• master_env - environment variables to pass from the master node to the slave nodes. This is used because
MPI slaves don’t have an environment.

• modules - modules that must be loaded when the cluster begins.

• services - a list of service files containing start and stop script information.

• workdir - place where logs and temporary data is written. Configuration files will be copied here as
well. localworkdir is a subdirectory of workdir and is useful for when workdir is on a shared file
system.

1.3.1 Template parameters

There are some templating variables that can be entered into the configuration files. These use a dollar sign ($)
prefix.

• masterhostname - hostname for the master node.

• masterdataname - hostname for the Infiniband interface of the master node

• hostname - hostname for the local node.

• hostaddress - ip for the local node.

• dataname - hostname for the Infiniband interface of the local node.

• dataaddress - ip for the Infiniband interface of the local node.

• user - user name of the person running the cluster.

• pid - process ID.

• workdir - workdir as defined.

• localworkdir - subdirectory of workdir qualified using the node name and a pid. This is used for
keeping distinct per-node directories on a shared file system.

1.3. Configuration 5

Documentation for hanythingondemand, Release 20161021.01

1.3.2 Service configs

Service configs have three sections: Unit, Exec and Environment. Here is an example:

[Unit]
Name=nodemanager
RunsOn=all

[Service]
ExecStart=$$EBROOTHADOOP/sbin/yarn-daemon.sh start nodemanager
ExecStop=$$EBROOTHADOOP/sbin/yarn-daemon.sh stop nodemanager

[Environment]
YARN_NICENESS=1 /usr/bin/ionice -c2 -n0 /usr/bin/hwloc-bind socket:0
HADOOP_CONF_DIR=$localworkdir/conf
YARN_LOG_DIR=$localworkdir/log
YARN_PID_DIR=$localworkdir/pid

• Name - name of the service.

• RunsOn - (all|master|slave). Determines which nodes/group of nodes to run the service.

• ExecStartPre - script to run before starting the service. e.g. used in HDFS to run the -format script.

• ExecStart - script to start the service

• ExecStop - script to stop the service

• Environment - Environment variable definitions used for the service.

1.3.3 Autogenerated configuration

Autogenerating configurations is a powerful feature that lets you run services inside hanythingondemand on new
clusters without having to hand calculate all the memory settings by hand.

For example,

• If your administrators installed a brand spanking new cluster with a large amount of memory available,
you don’t have to create a bunch of new configuration files to reflect the new system. It should all work
seamlessly.

• You are holding a class and would like to allocate each student half a node - then they can use autogenerated
settings along with --rm-ppn=<half-the-number-of-cores>

To autogenerate some configurations, set autogen setting to an appropriate value in the Config section.

1.3.4 Preview configuration

To preview the output configuration files that your hod.conf file would produce, one can use the genconfig
command:

hod genconfig --hodconf=/path/to/hod.conf --workdir=/path/to/workdir

Here, --workdir is the output directory (which will be created if it doesn’t yet exist) and --hodconf is the
input configuration file.

1.4 Command line interface

This page provides an overview of the hanythingondemand command line interface.

6 Chapter 1. Introductory topics

Documentation for hanythingondemand, Release 20161021.01

Note: This only applies to hanythingondemand version 3 and newer; older versions provided a significantly
different command line interface.

Contents

• Command line interface
– hod command

* General hod command line options
– hod subcommands

* hod batch --script=<script-name>

* hod clean

* hod clone <dist-name> <destination>

* hod connect <cluster-label>

* hod create

* hod destroy <cluster-label>

* hod dists

* hod genconfig

* hod help-template

* hod list

* hod relabel <old-label> <new-label>

* --job options for hod create / hod batch

1.4.1 hod command

The main hanythingondemand command is a Python script named hod, and implements the top-level command
line interface that discriminates between the various subcommands.

Running hod without arguments is equivalent to hod --help, and results in basic usage information being
printed:

$ hod
hanythingondemand version 3.2.0 - Run services within an HPC cluster
usage: hod <subcommand> [subcommand options]
Available subcommands (one of these must be specified!):

batch Submit a job to spawn a cluster on a PBS job controller, run a job script, and tear down the cluster when it's done
clean Remove stale cluster info.
clone Write hod configs to a directory for editing purposes.
connect Connect to a hod cluster.
create Submit a job to spawn a cluster on a PBS job controller
destroy Destroy an HOD cluster.
dists List the available distributions
genconfig Write hod configs to a directory for diagnostic purposes
help-template Print the values of the configuration templates based on the current machine.
list List submitted/running clusters
relabel Change the label of an existing job.

General hod command line options

hod [subcommand] --help

Print usage information and supported subcommands along with a short help message for each of them, or usage
information and available options for the specified subcommand.

1.4. Command line interface 7

Documentation for hanythingondemand, Release 20161021.01

1.4.2 hod subcommands

The hod command provides a number of subcommands, which correspond to different actions.

An overview of the available subcommands is available via hod --help (see hod command).

More details on a specific subcommand are available via hod <subcommand> --help.

Available subcommands:

• hod batch –script=<script-name>

• hod clean

• hod clone <dist-name> <destination>

• hod connect <cluster-label>

• hod create

• hod destroy <cluster-label>

• hod dists

• hod genconfig

• hod help-template

• hod list

• hod relabel <old-label> <new-label>

hod batch --script=<script-name>

Create a cluster and run the script. Upon completion of the script, the cluster will be stopped.

Next to --script (which is mandatory with batch), all configuration options supported for create are also
supported for batch, see Configuration options for hod create. When used with batch, these options can also
be specified via $HOD_BATCH_*.

Jobs that have completed will remain in the output of hod list with a job id of <job-not-found> until
hod clean is run (see hod clean), or until the cluster is destroyed using hod destroy (see hod destroy
<cluster-label>).

Note: --hod-module, --workdir, and either --hodconf or --dist must be specified.

hod clean

Remove cluster info directory for clusters that are no longer available, i.e. those marked with
<job-not-found> in the output of hod list.

hod clone <dist-name> <destination>

Clone a dist for use editing purposes. If there is a provided dist that is almost what is required for some work,
users can clone it and edit the files.

hod connect <cluster-label>

Connect to an existing hanythingondemand cluster, and set up the environment to use it.

This basically corresponds to logging in to the cluster head node using SSH and sourcing the cluster information
script that was created for this cluster ($HOME/.config/hod.d/<label>/env).

8 Chapter 1. Introductory topics

Documentation for hanythingondemand, Release 20161021.01

hod create

Create a hanythingondemand cluster, with the specified label (optional) and cluster configuration file (required).

The configuration file can be a filepath, or one of the included cluster configuration files (see hod dists).

Jobs that have completed will remain in the output of hod list with a job id of <job-not-found> until
hod clean is run (see hod clean), or until the cluster is destroyed using hod destroy (see hod destroy
<cluster-label>).

Note: --hod-module, --workdir, and either --hodconf or --dist must be specified.

Configuration options for hod create

hod create --hod-module <module name> must be specified

Specify the hanythingondemand module that must be loaded in the job that is submitted for the HOD cluster;
can also be specified via $HOD_CREATE_HOD_MODULE.

hod create --workdir <path> must be specified

Specify the top-level working directory to use; can also be specified via $HOD_CREATE_WORKDIR.

hod create --hodconf <path> either --dist or this must be specified

Specify location of cluster configuration file; can also be specified via $HOD_CREATE_HODCONF.

hod create --dist <dist> either --hodconf or this must be specified

Specify one of the included cluster configuration file to be used (see also hod dists); can also be specified via
$HOD_CREATE_DIST.

hod create --label <label> Specify label for this cluster. If not label is specified, the job ID will be
used as a label; can also be specified via $HOD_CREATE_LABEL.

The label can be used to later connect to the cluster while it is running (see hod connect <cluster-label>).

hod create --modulepaths <paths> Add additional locations for modules that need to be loaded
(see hod create –modules <module names>).

Can also be specified via $HOD_CREATE_MODULEPATHS.

hod create --modules <module names> Add modules to the dist so each node has access to them.
If code submitted to the cluster requires a particular module, it should be added with this option. For example, if
an IPython notebook plans to use Python modules on the worker kernels (or through Spark) they will need to be
added here.

Can also be specified via $HOD_CREATE_MODULES.

hod create --job-* The resources being requested for the job that is submitted can be controlled via the
available --job options, see –job options for hod create / hod batch.

1.4. Command line interface 9

Documentation for hanythingondemand, Release 20161021.01

hod destroy <cluster-label>

Destroy the HOD cluster with the specified label.

This involves deleting the job, and removing the working directory and cluster info directory
($HOME/.config/hod.d/<label>) corresponding to this cluster, if they are still in place.

In case the cluster is currently running, confirmation will be requested.

hod dists

Print a list of available cluster configurations (‘distributions‘), along with the list of modules that correspond to
each of them.

See for example Available distributions.

hod genconfig

Generate hanythingondemand cluster configuration files to the working directory for diagnostic purposes.

The working directory can be specified using --workdir or via $HOD_GENCONFIG_WORKDIR.

hod help-template

Print the values for the configuration templates based on the current machine.

hod list

Print a list of existing clusters, and their state (‘queued‘ or ‘running‘).

Jobs that have completed running will remain in the list with <job-not-found> until hod clean is run (see
hod clean), or until the HOD cluster is destroyed using hod destroy (see hod destroy <cluster-label>).

hod relabel <old-label> <new-label>

Change the label for a hod cluster that is queued or running.

--job options for hod create / hod batch

The create and batch subcommands accept the following options to specify requested job resources.

These can also be specified via $HOD_BATCH_JOB_* (for hod batch) or $HOD_CREATE_JOB_* (for hod
create).

--job-mail/-m <string>

Send a mail when the cluster has started (b for ‘begin‘), stopped (e for ‘ended‘) or got aborted (a).

For example, using -m a will result in receiving a mail whn the cluster has started running.

--job-mailothers/-M <main addresses>

List of other mail adresses to send mails to.

10 Chapter 1. Introductory topics

Documentation for hanythingondemand, Release 20161021.01

--job-name/-N <name>

Specify the name for the job that will be submitted.

--job-nodes/-n <int>

The number of (full) workernodes to request for the job being submitted (default: 1).

--job-ppn <int>

The number of cores per workernode to request; by default: -1, i.e. full workernodes (request all available cores).

--job-queue/-q <int>

Name of job queue to submit to (default: none specified).

--job-walltime/-l <int>

Number of hours of walltime to request (default: 48).

1.5 Logging

If your job didn’t work as expected, you’ll need to check the logs.

It’s important to realise that both hanythingondemand itself and the services it is running (e.g. Hadoop) produce
logs.

Which logs you should be diving into depends on the information you are looking for or the kind of problems you
run into.

Contents

• Logging
– hanythingondemand logs
– Service logs

1.5.1 hanythingondemand logs

For hanythingondemand itself, there are three places to consider:

1. When submitting your job to start the cluster, hanythingondemand logs to your terminal session. The
potential errors here are usually:

• PBS isn’t running or isn’t accessible. If so, contact your administrators.

• Your environment is broken. For example, if you’re using a Python version for a cluster that doesn’t
work on the login node.

2. If PBS is accessible and tries to run the job but it failed to start properly (e.g. due to a problem with MPI)
you will see errors in Hanythingondemand.e${PBS_JOBID}. This will be in the directory from
where you ran the job.

1.5. Logging 11

Documentation for hanythingondemand, Release 20161021.01

3. When PBS starts your job, it will start logging to hod.output.$(hostname).$(pid). If your ser-
vice configuration files have problems (e.g. typos in the commands, bad paths, etc) then the error will be
here. For example if a service failed to start you will see a message in the logs saying: Problem occured
with cmd.

1.5.2 Service logs

Hadoop logs

By default, the log files for a Hadoop cluster will be in $HOD_LOCALWORKDIR/log, where the
$HOD_LOCALWORKDIR is an environment variable set by hod connect.

Expanded, this is in the workdir of the HOD cluster as follows:
$workdir/$PBS_JOBID/${USER}.${HOSTNAME}.${PID}/log

One of the advantages of having the log files on a parallel file system is that one no longer needs to use special
tools for log aggregation (Flume, Logstash, Logly, etc) since all the logs for all the nodes are in a single directory
structure.

Hadoop logs have two components:

1. Service logs: These are in $HOD_LOCALWORKDIR/log. Exam-
ples are: yarn-username-resourcemanager-node.domain.out,
yarn-username-nodemanager-node.domain.out.

2. Container logs: Each piece of Hadoop work takes place in a container. Output from your program will
appear in these files. These are organized by application/container/stderr and stdout. For example:

$HOD_LOCALWORKDIR/log/userlogs/application_1430748293929_0001/container_1430748293929_0001_01_000003/stdout

IPython logs

IPython logs to stdout and stderr. These are sent by hanythingondemand to
$HOD_LOCALWORKDIR/log/pyspark.stdout and $HOD_LOCALWORKDIR/log/pyspark.stderr

hod batch logs

Logs for your script running under hod batch are found in your $PBS_O_WORKDIR in:
<script-name>.o<$PBS_JOBID> and <script-name>.e<$PBS_JOBID>.

If you want to watch the progress of your job while it’s running, it’s advisable to write your script so that it pipes
output to the tee command.

1.6 Connecting to web user interfaces

To connect to web user interfaces (UIs) that are available for a running HOD cluster, you need to follow these
steps:

1. Set up an SSH tunnel to the head node of your HOD cluster (see Setting up an SSH tunnel)

2. Configure your browser to use the SSH tunnel as a SOCKS proxy (see Browser SOCKS proxy configuration)

3. Point your browser to http://localhost:<port> (see Ports for web user interfaces)

12 Chapter 1. Introductory topics

Documentation for hanythingondemand, Release 20161021.01

Contents

• Connecting to web user interfaces
– Setting up an SSH tunnel

* Determine hostname of head node of HOD cluster
* Configuring your SSH client to use an SSH tunnel
* Starting the SSH tunnel

– Browser SOCKS proxy configuration
– Ports for web user interfaces

* Ports for Hadoop web user interface (defaults)
* Ports for Spark web services
* Ports for IPython web services

1.6.1 Setting up an SSH tunnel

To connect to a web UI available on your running hanythingondemand cluster, you most likely need to set up an
SSH tunnel first.

Typically, the HOD cluster is running on a workernode of an HPC cluster that is only accessible via the HPC login
nodes. To connect to a web UI however, we need direct access. This can be achieved by tunneling via SSH over
the login nodes.

To set up an SSH tunnel, follow these steps:

1. Determine hostname of the head node of your HOD cluster (see Determine hostname of head node of HOD
cluster)

2. Configure your SSH client (see Configuring your SSH client to use an SSH tunnel)

3. Start the SSH tunnel (see Starting the SSH tunnel)

Determine hostname of head node of HOD cluster

The first step is to figure out which workernode is the head node of your HOD cluster, using hod list.

For example:

$ hod list
Cluster label Job ID State Hosts
example 123456.master15.delcatty.gent.vsc R node2001.delcatty.gent.vsc

So, in this example, node2001.delcatty.gent.vsc is the fully qualified domain name (FQDN) of the
head node of our HOD cluster.

Configuring your SSH client to use an SSH tunnel

See the sections below how to configure your SSH client.

Configuring SSH in Mac OS X or Linux

To configure SSH to connect to a particular workernode using an SSH tunnel, you need to add a couple of lines to
your $HOME/.ssh/config file.

For example, to configure SSH that it should tunnel via the HPC login node login.hpc.ugent.be for all
FQDNs that start with node and end with .gent.vsc, using vsc40000 as a user name, the following lines
should be added:

1.6. Connecting to web user interfaces 13

Documentation for hanythingondemand, Release 20161021.01

Host node*.gent.vsc
ProxyCommand ssh -q login.hpc.ugent.be 'exec nc -w 21600s %h %p'
User vsc40000

Configuring PuTTY in Windows

configuring_putty_on_windows is more involved than Linux or OS X so it has its own page.

Starting the SSH tunnel

To start the SSH tunnel, simply set up an SSH connection to that head node of your HOD cluster, while specifying
a local port that can be used to set up a SOCKS proxy to that workernode.

You can choose a port number yourself, but stick to numbers higher than 1024 (lower ports are priveledged ports,
and thus require adminstration rights).

We will use port number 10000 (ten thousand) as an example below (and you should be able to use it too).

Starting the SSH tunnel on Mac OS X or Linux

On OS X or Linux, just SSH to the FQDN of the head node of the HOD cluster, and specify the local port you
want to use for your SOCKS proxy via the -D option of the SSH command.

For example, to connect to node2001.delcatty.gent.vsc using port 10000:

$ ssh -D 10000 node2001.delcatty.gent.vsc
$ hostname
node2001.delcatty.os

Note: Starting the SSH tunnel will only work if you have an HOD cluster running on the specified workernode.
If not, you may see the connection ‘hang’ rather than fail. To cancel to connection attempt, use Ctrl-C.

Note: When first connecting to a workernode, you will see a request to accept the RSA key fingerprint for that
workernode, as shown below. If you are confident you are connecting to the right workernode, enter ‘yes‘:

The authenticity of host 'node2001.delcatty.gent.vsc (<no hostip for proxy command>)' can't be established.
RSA key fingerprint is 00:11:22:33:44:55:66:77:88:99:aa:bb:ee:dd:ee:ff.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'node2001.delcatty.gent.vsc' (RSA) to the list of known hosts.

Starting the SSH tunnel using PuTTy in Windows

With your saved session configured, open the proxy session.

1.6.2 Browser SOCKS proxy configuration

To access the web user interface(s) of your running HOD cluster, you need to configure your browser to use the
SSH tunnel as a proxy.

Basically, you need to:

• define localhost (i.e., your own system) as a SOCKS proxy in your browser, using the port that you
used when setting up the SSH tunnel (e.g., 10000)

14 Chapter 1. Introductory topics

Documentation for hanythingondemand, Release 20161021.01

• make sure that the proxy will also be used when entering https://localhost:<port> as a URL in
your browser

• enter https://localhost:<port> as a URL in your browser, with <port> the port number for the
web UI you want to connect to (see Ports for web user interfaces)

The pages linked below provide a detailed walkthrough with screenshots on how to configure some commonly
used browsers:

• Firefox (Windows, OS X, Linux)

• Chrome, Safari (OS X)

• Chrome (Windows)

Note: Keep in mind that using the proxy will only work while you have access to the workernode for which
the SSH tunnel was set up, i.e. while the HOD cluster is running, and while you are able to connect to the HPC
infrastructure.

To reset your browser configuration back to normal, simply disable the proxy in your browser configuration.

1.6.3 Ports for web user interfaces

Once you have set up an SSH tunnel (see Setting up an SSH tunnel) and have configured your browsers to use it as
a SOCKS proxy (see Browser SOCKS proxy configuration), you can connect to the web user interfaces available
in your running HOD cluster via:

http://localhost:<port>

The port number to use depends on the particular web user interface you want to connect to, see below.

Note: The command netstat -tulpn may be helpful in figuring out the ports being used by the running
services.

Ports for Hadoop web user interface (defaults)

• 50030: Hadoop job tracker

• 50060: Hadoop task tracker

• 50070: HFDS name node

• 50075: HDFS data nodes

• 50090: HDFS secondary name node

• 50105: HDFS backup/checkpoint node

(see also http://blog.cloudera.com/blog/2009/08/hadoop-default-ports-quick-reference)

Ports for Spark web services

• 4040: information about running Spark application

Note: If multiple Spark applications (SparkContexts) are running, their web UI will be available via successive
ports beginning with 4040 (4041, 4042, etc).

(see also https://spark.apache.org/docs/latest/monitoring.html)

1.6. Connecting to web user interfaces 15

http://blog.cloudera.com/blog/2009/08/hadoop-default-ports-quick-reference
https://spark.apache.org/docs/latest/monitoring.html

Documentation for hanythingondemand, Release 20161021.01

Ports for IPython web services

• 8888: IPython notebook

1.7 Spark

Many traditional HPC users who are interested in Hadoop are also very interested in Spark. With the claimed
performance improvements, it’s easy to see why.

Spark works with Yarn out of the box so there’s nothing special that needs to happen with Hanythingondemand.
Just use spark-submit --master=yarn-cluster with all the other arguments to spark-submit, and it
works.

1.8 Example use cases

A couple of example use cases are described below.

We assume that the hod command is readily available in the environment; if it is not by default, maybe you should
load a module first: see which hod or hanythingondemand modules are available via module avail, and
load one of them using module load.

To check, just run hod without arguments, which should produce basic usage information (see hod command).

Contents

• Example use cases
– Common aspects
– Interactively using a Hadoop cluster
– Running a batch script on a Hadoop cluster
– Connecting to an IPython notebook running on an HOD cluster

1.8.1 Common aspects

Configuring HOD

You can/should configure HOD by defining the HOD work directory and specifying which module should be
loaded in the HOD job being submitted (see also Configuration options for hod create).

To configure hod batch, you can set the following environment variables:

$ export HOD_BATCH_HOD_MODULE=hanythingondemand/3.0.0-intel-2015b-Python-2.7.10
$ export HOD_BATCH_WORKDIR=$VSC_SCRATCH/hod

Likewise, for hod create:

$ export HOD_CREATE_HOD_MODULE=hanythingondemand/3.0.0-intel-2015b-Python-2.7.10
$ export HOD_CREATE_WORKDIR=$VSC_SCRATCH/hod

If HOD is being provided via an environment module, it is likely that the module provides decent default values
for these already.

The examples below will assume that this configuration is in place already.

16 Chapter 1. Introductory topics

http://spark.apache.org/
https://spark.apache.org/docs/1.0.0/submitting-applications.html

Documentation for hanythingondemand, Release 20161021.01

Available distributions

To get an overview of readily available HOD distributions, to select a value to specify to --dist, use hod
dists (slightly trimmed output):

$ hod dists

* HBase-1.0.2
modules: HBase/1.0.2, Hadoop/2.6.0-cdh5.4.5-native

...

* Hadoop-2.6.0-cdh5.4.5-native
modules: Hadoop/2.6.0-cdh5.4.5-native

...

* Jupyter-notebook-5.1.0
modules: Hadoop/2.6.0-cdh5.8.0-native, Spark/2.0.0, IPython/5.1.0-intel-2016b-Python-2.7.12, matplotlib/1.5.1-intel-2016b-Python-2.7.12

1.8.2 Interactively using a Hadoop cluster

To interactively use an HOD cluster, you should

1. create an HOD cluster, using hod create

2. connect to it once it is up and running, using hod connect

3. execute your commands

See the example below for more details; basic usage information for hod create is available at hod create.

Using screen

To interactively start commands that may require some time to finish, we strongly recommended starting a so-
called screen session after connecting to the HOD cluster.

Basic usage:

• to start a screen session, simply the screen command; to specify a name for the session, use screen -S
<name>

• to get an overview of running screen sessions, use screen -ls

• to detach from a screen session, with the option to later reattach to it, us the Ctrl-A-D key combination.

• to end a screen session, simply type exit (no reattaching possible later!)

• to reconnect to a screen session, use screen -r <name>; or simply use screen -r if there’s only
one running screen session

More information about screen is available at http://www.gnu.org/software/screen/manual/screen.html.

Example: Hadoop WordCount

In the example below, we create a Hadoop HOD cluster, connect to it, and run the standard WordCount example
Hadoop job.

• create a Hadoop HOD cluster labelled hod_hadoop:

$ hod create --dist Hadoop-2.5.0-cdh5.3.1-native --label hod_hadoop

Submitting HOD cluster with label 'hod_hadoop'...
Job submitted: Jobid 12345.master15.delcatty.gent.vsc state Q ehosts

• check the status of the HOD cluster (‘Q‘ for queued, ‘R‘ for running):

1.8. Example use cases 17

http://www.gnu.org/software/screen/manual/screen.html
https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html#Example:_WordCount_v1.0
https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html#Example:_WordCount_v1.0

Documentation for hanythingondemand, Release 20161021.01

$ hod list

Cluster label Job ID State Hosts
hod_hadoop 12345.master15.delcatty.gent.vsc Q

...

$ hod list

Cluster label Job ID State Hosts
hod_hadoop 12345.master15.delcatty.gent.vsc R node2001.delcatty.gent.vsc

• connect to the running HOD cluster:

$ hod connect hod_hadoop

Connecting to HOD cluster with label 'hod_hadoop'...
Job ID found: 12345.master15.delcatty.gent.vsc
HOD cluster 'hod_hadoop' @ job ID 12345.master15.delcatty.gent.vsc appears to be running...
Setting up SSH connection to node2001.delcatty.gent.vsc...
Welcome to your hanythingondemand cluster (label: hod_hadoop)

Relevant environment variables:
HADOOP_CONF_DIR=/user/scratch/gent/vsc400/vsc40000/hod/hod/12345.master15.delcatty.gent.vsc/vsc40000.node2001.delcatty.os.26323/conf
HADOOP_HOME=/apps/gent/CO7/haswell-ib/software/Hadoop/2.5.0-cdh5.3.1-native/share/hadoop/mapreduce
HOD_LOCALWORKDIR=/user/scratch/gent/vsc400/vsc40000/hod/hod/12345.master15.delcatty.gent.vsc/vsc40000.node2001.delcatty.os.26323

List of loaded modules:
Currently Loaded Modulefiles:
1) cluster/delcatty(default) 2) Java/1.7.0_76 3) Hadoop/2.5.0-cdh5.3.1-native

• run Hadoop WordCount example

– change to local work directory of this cluster:

$ cd $HOD_LOCALWORKDIR

– download example input file for wordcount:

$ curl http://www.gutenberg.org/files/98/98.txt -o tale-of-two-cities.txt

– build WordCount.jar (note: assumes that $HOME/WordCount.java is available):

$ cp $HOME/WordCount.java .
$ javac -classpath $(hadoop classpath) WordCount.java
$ jar cf WordCount.jar WordCount*.class

– run WordCount Hadoop example:

$ hadoop jar WordCount.jar WordCount tale-of-two-cities.txt wordcount.out
(output omitted)

– query result:

$ grep ^city wordcount.out/part-r-00000
city 20
city, 9
city. 5

1.8.3 Running a batch script on a Hadoop cluster

Since running a pre-defined set of commands is a common pattern, HOD also supports an alternative to creating
an HOD cluster and using it interactively.

18 Chapter 1. Introductory topics

Documentation for hanythingondemand, Release 20161021.01

Via hod batch, a script can be provided that should be executed on an HOD cluster. In this mode, HOD will:

• start an HOD cluster with the specified configuration (working directory, HOD distribution, etc.)

• execute the provided script

• automatically destroy the cluster once the script has finished running

This alleviates the need to wait until a cluster effectively starts running and entering the commands interactively.

See also the example below; basic usage information for hod batch is available at hod batch –script=<script-
name>.

Example: Hadoop WordCount

The classic Hadoop WordCount can be run using the following script (wordcount.sh) on an HOD cluster:

#!/bin/bash

move to (local) the local working directory of HOD cluster on which this script is run
export WORKDIR=$VSC_SCRATCH/$PBS_JOBID
mkdir -p $WORKDIR
cd $WORKDIR

download example input file for wordcount
curl http://www.gutenberg.org/files/98/98.txt -o tale-of-two-cities.txt

build WordCount.jar (note: assumes that ``$HOME/WordCount.java`` is available)
cp $HOME/WordCount.java .
javac -classpath $(hadoop classpath) WordCount.java
jar cf WordCount.jar WordCount*.class

run WordCount Hadoop example
hadoop jar WordCount.jar WordCount tale-of-two-cities.txt wordcount.out

copy results
cp -a wordcount.out $HOME/$PBS_JOBNAME.$PBS_JOBID

Note: No modules need to be loaded in order to make sure the required software is available (i.e., Java, Hadoop).
Setting up the working environment in which the job will be run is done right after starting the HOD cluster.

To check which modules are/will be available, you can use module list in the script you supply to hod
batch or check the details of the HOD distribution you use via hod clone <dist-name> <destination>.

To run this script on a Hadoop cluster, we can submit it via hod batch:

$ hod batch --dist Hadoop-2.5.0-cdh5.3.1-native --script $PWD/wordcount.sh --label wordcount
Submitting HOD cluster with label 'wordcount'...
Job submitted: Jobid 12345.master15.delcatty.gent.vsc state Q ehosts

$ hod list
Cluster label Job ID State Hosts
wordcount 12345.master15.delcatty.gent.vsc R node2001.delcatty.gent.vsc

Once the script is finished, the HOD cluster will destroy itself, and the job running it will end:

$ hod list
Cluster label Job ID State Hosts
wordcount 12345.master15.delcatty.gent.vsc <job-not-found> <none>

Hence, the results should be available (see the cp at the end of the submitted script):

1.8. Example use cases 19

Documentation for hanythingondemand, Release 20161021.01

$ ls $HOME/HOD_wordcount.12345.master15.delcatty.gent.vsc
total 416
-rw-r--r-- 1 example example 210041 Oct 22 13:34 part-r-00000
-rw-r--r-- 1 example example 0 Oct 22 13:34 _SUCCESS

$ grep ^city $HOME/HOD_wordcount.12345.master15.delcatty.gent.vsc/part-r-00000
city 20
city, 9
city. 5

Note: To get an email when the HOD cluster is started/stopped, use the -m option, see –job-mail/-m <string>.

1.8.4 Connecting to an IPython notebook running on an HOD cluster

Running an IPython notebook on an HOD cluster is as simple as creating an HOD cluster using the appropriate
distribution, and then connecting to the IPython notebook over an SSH tunnel.

For example:

• create HOD cluster using an IPython HOD distribution:

$ hod create --dist IPython-notebook-3.2.1 --label ipython_example
Submitting HOD cluster with label 'ipython_example'...
Job submitted: Jobid 12345.master15.delcatty.gent.vsc state Q ehosts

• determine head node of HOD cluster:

$ hod list
Cluster label Job ID State Hosts
ipython_example 12345.master15.delcatty.gent.vsc R node2001.delcatty.gent.vsc

• connect to IPython notebook by pointing your web browser to http://localhost:8888, using a SOCKS proxy
over an SSH tunnel to the head node node2001.delcatty.gent.vsc (see Connecting to web user
interfaces for detailed information)

20 Chapter 1. Introductory topics

http://localhost:8888

	Introductory topics
	What is hanythingondemand?
	Administration
	Prerequisites
	Torque
	Environment Modules

	Configuration
	Template parameters
	Service configs
	Autogenerated configuration
	Preview configuration

	Command line interface
	hod command
	hod subcommands

	Logging
	hanythingondemand logs
	Service logs

	Connecting to web user interfaces
	Setting up an SSH tunnel
	Browser SOCKS proxy configuration
	Ports for web user interfaces

	Spark
	Example use cases
	Common aspects
	Interactively using a Hadoop cluster
	Running a batch script on a Hadoop cluster
	Connecting to an IPython notebook running on an HOD cluster

